Review of "Fractals and Chaos: The Mandelbrot Set and Beyond", by B. Mandelbrot

نویسنده

  • Alberto Diaspro
چکیده

Benoit Mandelbrot has produced a comprehensive, wellpresented review of essential topics related to Mandelbrot set theory and applications. The last part of the title "The Mandelbrot set and beyond" fully describes its potential allowing the reader to navigate through pictures, hard-tofind early papers and important and effective chapters on the historical background. All chapters are assembled in a way that the overall mix becomes a very well integrated source of know-how and knowledge bringing the readers into the Mandelbrot set world. The spirit of the book is well summarized in a sentence on page 34: "When seeking new insights, I look, look, look, and play with many pictures. (One picture is never enough)." It is certainly true that in the last twenty years, mathematics has changed so deeply that to younger persons some chapter's stories might be simply incredible (p.36), as well, one should admit that after Mandelbrot's sets, initially describing trees, coastlines' shapes or allowing measuring the length of the Britain coast, and after the seminal book on "The Fractal Geometry of Nature" our way of looking at the world changed. Mandelbrot wrote: "Why is geometry often described as 'cold' and 'dry'? One reason lies in its inability to describe the shape of a cloud, a mountain, a coastline or a tree. Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line". I think our vision of the world, from the atom to the higher length scales, is still changing using those concepts clearly illustrated in the current Mandelbrot's book. Selected notes and papers make this book unique within the several books published on this topic. It is clear the touch of the author under all aspects: a touch of pure genius.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Mandelbrot Set with Transcendental Function

These days Mandelbrot set with transcendental function is an interesting area for mathematicians. New equations have been created for Mandelbrot set using trigonometric, logarithmic and exponential functions. Earlier, Ishikawa iteration has been applied to these equations and generate new fractals named as Relative Superior Mandelbrot Set with transcendental function. In this paper, the Mann it...

متن کامل

Generation of 3D Fractal Images for Mandelbrot and Julia Sets

Fractals provide an innovative method for generating 3D images of real-world objects by using computational modelling algorithms based on the imperatives of self-similarity, scale invariance, and dimensionality. Images such as coastlines, terrains, cloud mountains, and most interestingly, random shapes composed of curves, sets of curves, etc. present a multivaried spectrum of fractals usage in ...

متن کامل

Hausdorff Dimension of Random Fractals with Overlaps

The term fractal was first introduced by Mandelbrot to denote sets with highly irregular structures. Mandelbrot and others have then used fractals to model various natural phenomena (for example, [19, 2]). A mathematical development of fractals via the theory of (non-random) self-similar sets and measures was given by Hutchinson [12]. A family of contractive maps {Sj}^ on E m is called an itera...

متن کامل

Mathematical methods used in monofractal and multifractal analysis for the processing of biological and medical data and images

An object is self-similar if it can be decomposed into smaller copies of itself (the structure of the whole is contained in its parts) (Mandelbrot 1982; Falconer 2003). Not all irregular shapes found in nature are necessarily fractals (Losa 2009). Monofractal objects are mainly characterized by four properties: a) irregularity of the shape; b) self-similarity of the structure; c) non-integer or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • BioMedical Engineering OnLine

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2005